non1inearcircuits

NULL-A A_{2} Build \& BOM

Nu11-A A_{2} is an all-in-one analogue synth packed into 42 HP .
It features:

2 vcos
1 state variable VCF
1 ladder VCF
1 VC Delay

3 VCAs
2 LFOs
Mixer
Headphone amp

Sequencer
Clock Divider
Sample \& Hold (S\&H)
Sloth chaos generator

It does not feature MIDI, micro-processors or any software.
There are several presets that run between the switches of the jacks. If you insert a patch-cable into either jack the preset is disconnected.
a) VCO1 pulse out > state variable VCF input
b) VCO2 pulse out > ladder VCF input
c) state variable VCF LP output > VCA1 input
d) 1adder VCF output > VCA2 input
e) VCA1 output > mixer
f) VCA2 output > mixer
g) Mixer output > headphone amp
h) ADSR output > VCA1 CV input
i) Clock divider /8 output $>$ ADSR gate input
j) LFO 1 square output $>$ S\&H clock input
k) LFO2 triangle output \& Sloth chaos output \& sequencer CV output > S\&H sample input

1) LFO2 square output > Clock divider input
m) LFO2 square output > Sequencer clock input

Preset patches $a, b, c, d, h, i, 7, m$ from the above 7ist

Most of these are simply to save a few patch-cables.
The interesting one is the signals from the Sequencer, Sloth chaos and Tri from LFO2 are mixed and fed to the S\&H sample input. This means it is continually generating stepped and smooth CVs (for there is a slew pot) that are different but related to everything else that is going on.

The Clock Divider gives divisions of /2, /8, /32 and /128.
The Sequencer has 4 stages but the direction control can be used to make it count forwards and backwards enabling more complex sequences. In normal operation, the ' x ' output gives the CV generated by the stages 1 thru to 4 , meanwhile the 'y' output will give a CV signal generated by stages 4 thru to 1.

The VC Delay can be used to generate reverb type sounds but can also be pushed into making all sorts of unexpected zipper noises and effects when the Time and Feedback pots are turn high.

The third VCA is built into the input of the Ladder VCF. If nothing is patched into the 'CV VCA' input, the VCA is always on.

The sloth Chaos is a very slow CV generator, it can be used to liven up a patch and create slowly evolving sounds. It cannot be controlled, it does what it wants.

Components:

- A11 passives are 0805; make sure the capacitors are rated for at least 25v, preferably 50v. The 10uF capacitors will only be available with a 25 V rating, which is fine.
- C46-C74 are all listed as 10uF, these are for decoupling. You can replace some of them close to ICs with 100 nF if you wish, but the ones near the power connector and close to the bottom edge of the PCB should all remain 10uF.
- The LFOs and Sloth have been designed to work with 2 pin bipolar LEDs. You can just install normal LEDs instead, if you want to be boring. The ADSR uses a regular LED.
- RL in the value list means you need to choose a resistor to suit the brightness of your LED. For blue/red 2 pin bipolar LEDs I used 5k1.
- The ICs are all SOIC. You can get the PT2399 and 8 pin 78L05 from Tayda for a few cents.
- R8 and R30 can be 1 k tempco thru-hole resistors OR regular 1 k 0805 if you don't care all that much about VCO tuning stability. Do not install both types. If you do use tempco thru-holes, install them so the resistor body is resting on the 2 transistor pairs (Q1 \& Q2, Q3 \& Q4).
- Part numbers are for www.taydaelectronics.com, just to give examples.
- There is no R207, C73, Q25 on vers 2 PCBs, so do not look for them.
- The diode numbering got a bit messed up, so ignore it. It doesn't matter, there are 16 LL4148 diodes and 2 S1JL power diodes, these are located right next to the power connector, marked with a dot to indicate the cathode and are for reverse voltage protection.
- R195 (1M) can be used to reduce the maximum attack time in the ADSR. I leave it out on my builds.
- Any components with "*" next to them means they can be tweaked, for now ignore the * and use the value given.
- when soldering R148, drag the solder across the connect it to the via just below

PART NUMBER	VALUE	COMMENTS
C1	2 n 2	
C2	2 n 2	
C3	1 nF	
C4	1 nF	
C5	100 p	
C6	100 p	
C7	220 nF	
C8	100 n	
C9	100 n	
C10	100 n	
C11	100 n	
C12	470 p	
C13	10 u	
C14	10 u	
C15	10 n	
C16	100 n	
C17	1 u	
C18	10 n	
C19	10 u	
C20	100 n	
C21	10 u	
C22	100 n	
C23	100 n	
C24	100 n	
C25	100 n	
C26	1 n	
C27	10 n	
C28	1 n	
C29	10 u	
C30	10 u	
C31	10 u	
C32	1 u	
C33	1 nF	
C34	10 n	
C35	1 u	
C36	1 u	
C37	1 u	
C38	1 u	
C39	1 u	
C40	1 u	
C41	10 u	
C42	10 u	
C43	10 u	
C44	10 u	
C45	10 u	
C46	10 u	
C47	10 u	
C48		
C49		

C51	10u	
C52	10u	
C53	10u	
C54	10u	
C55	10u	
C56	10u	
C57	10u	
C58	10u	
C59	10u	
C60	10u	
C61	10u	
C62	10u	
C63	10u	
C64	10u	
C65	10u	
C66	10u	
C67	10u	
C68	10u	
C69	10u	
C70	10u	
C71	10u	
C72	10u	
C73	-	not on vers 2
C74	10u	
R1	91k	
R2	100k	
R3	100k	
R4	2M2	
R5	24k	
R6	10k	
R7	56k	
R8	1 kT	or thru-hole
R9	15k	
R10	220R	
R11	100k	
R12	100k	
R13	1k	
R14	10k	
R15	39k	
R16	10k	
R17	100k	
R18	10K	
R19	10K	
R20	100k	
R21	100k	
R22	100k	
R23	91k	
R24	100k	
R25	100k	
R26	2M2	
R27	24k	

R28	100k		R83	1K	
R29	56k		R84	470K	
R30	1kT	or thru-hole	R85	470k	
R31	10k		R86	15k	
R32	15k		R87	330R	
R33	220R		R88	2K7	
R34	100k		R89	1K	
R35	47k		R90	1K	
R36	1k		R91	12k	
R37	10k		R92	100k	
R38	39k		R93	47k	
R39	10k		R94	47k	
R40	100k		R95	1K	
R41	180k		R96	12k	
R42	180k		R97	47k	
R43	100k		R98	30k	
R44	10k		R99	47k	
R45	10k		R100	470R	
R46	100k		R101	470R	
R47	150k		R102	220k	
R48	100k		R103	68k	
R49	100k		R104	10K	
R50	100k		R105	10K	
R51	100k		R106	100k	
R52	470k		R107	330k	
R53	2k7		R108	1k	
R54	200k		R109	100k	
R55	2k2		R110	47k	
R56	33k		R111	47k*	
R57	27k		R112	10k*	
R58	2k2		R113	22k	
R59	33k		R114	220k	
R60	56k		R115	2K2	
R61	56k		R116	1K	
R62	100k		R117	10k	
R63	100R		R118	10k	
R64	100R		R119	10k	
R65	62k		R120	15k	
R66	100k		R121	10k	
R67	15k		R122	15k	
R68	100R		R123	2k2	
R69	100R		R124	47k	
R70	100k		R125	220k	
R71	150k		R126	1k	
R72	1k		R127	100k	
R73	100k		R128	100k	
R74	8k2		R129	100k	
R75	1k		R130	100k	
R76	470R		R131	100k	
R77	12k		R132	100k	
R78	62k		R133	1k	
R79	2K7		R134	100k	
R80	1K		R135	1k	
R81	1K		R136	1k	
R82	1K		R137	1k	

R138	1k		R193	47K	
R139	100k		R194	33k	
R140	12k				optional, see
R141	47k		R195	1M	notes
R142	30k		R196	1k	
R143	47k		R197	100k	
R144	470R		R198	100k	
R145	470R		R199	RL	ADSR LED
R146	220k		R200	1k	
R147	1k		R201	47k	
R148	12k		R202	330R	
R149	47k		R203	100k	
R150	30k		R204	10k	
R151	47k		R205	330R	
R152	470R		R206	47k	
R153	470R		R207	-	not on vers 2
R154	220k		R208	4M7	
R155	1k		R209	330k	
R156	470k		R210	100k	
R157	100k		R211	100k	
R158	100k		R212	220R	
R159	100k		R213	2k2	
R160	2M2		R214	4k7	
R161	1k		R215	1k	
R162	1k		R216	100k	
R163	100k		R217	RL	LFO LED
R164	10k		R218	2k2	
R165	1k		R219	2k2	
R166	100k		R220	2k2	
R167	1k		R221	2k2	
R168	100k		R222	2k2	
R169	330k		R223	2k2	
R170	4M7		R224	2k2	
R171	220R		R225	2k2	
R172	100k		R226	10k	
R173	1k		R227	100k	
R174	2K2		R228	10k	
R175	4K7		R229	100k	
R176	RL	LFO LED	R230	10k	
R177	1k		R231	100k	
R178	33k		R232	100k	
R179	22k		R233	100k	
R180	10k		R234	100k	
R181	22k		R235	100k	
R182	10K		R236	100k	
R183	22K		R237	100k	
R184	150K		R238	100k	
R185	56k		R239	150k	
R186	560K		R240	100k	
R187	47k		R241	1k	
R188	15K		R242	100k	
R189	47k		R243	150k	
R190	56k		R244	100k	
R191	22k		R245	1k	
R192	100k		R246	10k	

R247	100k	
R248	100k	
R249	10k	
R250	1M	
R251	1M	
R252	1k	
R253	1M	
R254	4k7	
R255	4k7	
R256	100k	
R257	100k	
R258	6M8	
R259	4M7	
R260	10M	
R261	RL	SToth LED
R262	100k	
TL072	U8, U10, U12, U15, U16, U22, U24,	
TL074	$\begin{aligned} & \text { U1, U3, } \\ & \text { U5, } \\ & \text { U13, } \\ & \text { U14, } \\ & \text { U17, } \\ & \text { U18, } \\ & \text { U23, } \\ & \text { U25 } \end{aligned}$	
LM13700	$\mathrm{U} 2, \mathrm{U} 4,$ U6, U11	
PT2399	U7	
4024	U19	
4029	U21	
4052	U20	
LM78L05ACMX	U9	$\begin{aligned} & 8 \text { PIN SOIC } \\ & \text { Tayda: A-629 } \end{aligned}$
Trimpot 100k multiturn	$\begin{aligned} & \text { TR1, } \\ & \text { TR3 } \end{aligned}$	
Trimpot 20k multiturn	$\begin{aligned} & \hline \text { TR2, } \\ & \text { TR4 } \end{aligned}$	
Trimpot 100k	TR6, TR7, TR9	
Trimpot 50k	TR5	

Trimpot 1k	TR8	
BCM847	$\begin{aligned} & \text { Q13, } \\ & \text { Q17 } \end{aligned}$	$\begin{aligned} & \text { SOT23-6 AKA } \\ & \text { SOT-457 } \\ & \text { Mouser Part No: } \\ & 771-\text { BCM847DS115 } \end{aligned}$
BC847	Q1, Q3, Q1, Q5, Q7, Q8, Q10, Q14, Q15, Q16, Q18, Q20, Q21, Q22, Q23, Q26, Q30, Q32, Q33, Q34, Q37, Q38, Q39, Q40, Q41, Q42, Q43	SOT23 There is no Q25 on vers 2.
BC857	$\begin{aligned} & \text { Q2, Q4, } \\ & \text { Q6, Q9, } \\ & \text { Q19, } \\ & \text { Q24, } \\ & \text { Q27, } \\ & \text { Q28, } \\ & \text { Q31, } \\ & \text { Q35, } \\ & \text { Q36, } \end{aligned}$	SOT23
S1JL power diode	D6, D7	The ones with the dots, near the power connector
LL4148	all other diodes	Diode numbering is a bit messed up, so ignore
$\begin{aligned} & \hline \text { J108 or J109 or } \\ & \text { J112 } \\ & \text { (MMBFJ108) } \\ & \text { or MMBF5459 } \\ & \text { or MMBF5486 } \end{aligned}$	$\begin{aligned} & \text { Q11, } \\ & \text { Q12, } \\ & \text { Q29 } \\ & \hline \end{aligned}$	SOT-23

COMPONENT	QUANTITY	COMMENTS
2 pin bipoTar LED	3	5 mm
LED	1	5
100k pot	29	
1MA pot		
MONO jacks	4	
STEREO jack	1	
Eurocrack power connector	1	
Single vactrol	1	Kobiconn type
10 Pin 2.54mm Single Row		
Female Pin Header	13	Tanything okay, even DIY
40 Pin 2.54mm Single Row Pin Header Strip	at least 4	Tayda: A-1306

Passives, transistors \& diodes BOM..... GET SPARES!!!!!!

470 p	1
100 n	10
100 p	2
10 n	4
10 u	41
1 n	5
1 u	8
220 n	1
2 n 2	2
100 k	66
100 R	4
10 k	26
10 M	1
$12 k$	5
150 k	5
15 k	7
180 k	2
$1 k$	33
1 k Tempco	2
1 M	4
200 k	1
220 k	5
220 R	4
22 k	5
$24 k$	2
$27 k$	1
$2 k 2$	14

2 k 7	3
2 M 2	3
30 k	3
330 k	3
330 R	3
33 k	4
39 k	2
470 k	4
470 R	7
47 k	17
4 k 7	4
4 M 7	3
560 k	1
56 k	6
62 k	2
68 k	1
6 M 8	1
8 k 2	2
91 k	4
RL	26
BC847	11
BC857	16
LL4148	3
J108, J109, J112	3
or simi 1 ar	2
S1JL	

Sma11 mod required for R148:

Set-Up

VCOs: The 100k trimpots on the VCOs are used to set up the pane 1 pots so they have minimal dead zones at the start and ends of their travel.

The 20k trimpots are used to dial in 1V/oct tuning; you should be able to get 3 octaves of decent tracking from these vCOs. I use a guitar tuner and get the VCO to some note, then stick in $1 V$ to the CV input (make sure the CV pot is turned to max) and adjust the 20 trimpot until the tuner shows the same note 1 octave up. Remove the $1 V$ source and your VCO will not return to the original frequency, tune the 20k trimpot again to a note, put in 1 Vand so on. It takes a few goes until you dial it in to the correct tuning.

State VCF: The balance trimpot (TR5) can usually be left at its mid-point. If you notice one of the outputs is much louder than the other, adjust this trimpot to get the outputs balanced.

TR6, the Freq offset trimpot is used to ensure the Freq pot is functional across its range, same idea as the 100k trimpots on the VCOs.

Ladder VCF: TR9 Ladder VCA trimpot at the top of the PCB is used to set up the VCA. Plug in a signal and listen to the output. Now plug a lead into the VCA CV input with the other end hanging free. Use this trimpot to turn off any signal you may still hear. Set it to the point just where the signal can no longer be heard. Remove the lead plugged into the VCA CV input; you should now hear the signal again.

TR7 Freq this sets the useful operating region of the CV inputs and Freq cutoff. Adjust it so you get good sounds coming out of the VCF when tweaking the Freq pot, by good sounds I mean runny liquid acid.

TR8 Q sets the range for the Q or resonance, set it so you get the filter screaming when the Q pot is turned up near max.

Board close-ups
Top right

Bottom right

Top midd7e

bottom midd7e

Top left

Bottom left

